Release of metal impurities from carbon nanomaterials influences aquatic toxicity.
نویسندگان
چکیده
Few studies have considered the environmental impacts of impurities and byproducts associated with low-efficiency nanomanufacturing processes. Here, we study the composition and aquatic toxicity of low-purity, as-produced fullerenes (C60) and metallofullerene waste solids, both of which were generated via arc-discharge synthesis. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and inductively coupled plasma mass spectroscopy (ICP-MS) were used to characterize the metals composition of the solid test materials and of aqueous leachates prepared by mixing test materials with waters of varying pH, hardness, and salinity. The aquatic toxicity of the leachates was determined using U.S. Environmental Protection Agency recommended aquatic bioassay protocols with two standard test organisms-Pimephales promelas and Ceriodaphnia dubia. Results indicated that metals associated with the solid test materials became mobilized in our test system upon interaction with waters of circumneutral pH and reached concentrations sufficient to induce toxicity in both test species. Acute (48 h) LC50 values for P. promelas and C. dubia exposed to leachates prepared from metallofullerene waste solids were 54 and 5% (as % leachate in diluent), respectively. Toxicity was eliminated after adding the chelator EDTA to the leachates, implicating divalent transition metals as the toxicity source. Our results demonstrate the aquatic toxicity of metals mobilized from products and byproducts of nanomanufacturing, and they emphasize the need for a global review of nanomanufacturing wastes and low-purity products.
منابع مشابه
Release of Metal Impurities from Carbon Nanomaterials Influences Aquatic Toxicity
M A T T H E W S . H U L L , † , ‡ A L A N J . K E N N E D Y , * , § J E F F E R Y A . S T E E V E N S , § A N T H O N Y J . B E D N A R , § C H A R L E S A . W E I S S , J R . , § A N D P E T E R J . V I K E S L A N D † Department of Civil and Environmental Engineering, Virginia Tech, 415 Durham Hall, Blacksburg, Virginia 24061, NanoSafe, Inc., 2200 Kraft Drive, Suite 1200 I, Blacksburg, Virgin...
متن کاملAcute toxicity of synthetic colloidal silver nanoparticles produced by laser ablation method to Eastern mosquitofish, Gambusia holbrooki
Considering the growing production, consumption of nanomaterials and their probable release into the aquatic ecosystems and study on the toxic effects of these materials are of critical importance to aquatic organisms. In this study, the acute toxicity of silver nanoparticles (AgNPs) produced by a physical method (laser ablation) was examined on Gambusia fish. Acute toxicity tests were planned ...
متن کاملDeposition of carbon nanotubes by a marine suspension feeder revealed by chemical and isotopic tracers.
Carbon nanotubes (CNTs) are one of the few truly novel nanomaterials and are being incorporated into a wide range of products, which will lead to environmental release and potential ecological impacts. We examined the toxicity of CNTs to marine mussels and the effect of mussels on CNT fate and transport by exposing mussels to 1, 2, or 3mg CNTsl(-1) for four weeks and measuring mussel clearance ...
متن کاملRemoval of Pharmaceutical Compounds from Hospital Wastewaters Using Nanomaterials: A Review
Over the past few years, residual pharmaceuticals (antibiotics, anticonvulsants, antipyretics drugs, hormones) have begun to be considered as emerging environmental pollutants due to their continuous input and persistence to aquatic ecosystem even at low concentrations. Therefore, the development of efficient, cost-effective, and stable methods and materials for the wastewaters treatment have g...
متن کاملComparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles.
Research has demonstrated that metallic nanoparticles produce toxicity in aquatic organisms that is due largely to effects of particulates as opposed to release of dissolved ions. The present research examined the interplay of nanoparticle composition and dissolution on response of the zebrafish gill following exposure to toxic (nanocopper or nanosilver) or nontoxic (nano-TiO2) nanometals. Fema...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 43 11 شماره
صفحات -
تاریخ انتشار 2009